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Abstract

In the present paper a method is proposed to investigate the behaviour of the axisymmetric system consisting of an

infinite thin elastic cylindrical shell submerged in an unbounded elastic medium, filled with an ideal compressible liquid

and containing a vibrating spherical inclusion, under periodic dynamic action. The goal is the analysis of the so-called

‘‘resonance’’ phenomena; namely: finding conditions for their appearance, and possible control by means of

characteristic parameters of the hydroelastic system under consideration. The technique presented in this work was

developed during the realization of a project on elaboration of methods of renewal of oil production in foul wells at the

Theory of Vibration Department of the S.P. Timoshenko Institute of Mechanics of the Ukrainian Academy of Science.

This mathematical technique allows rewriting the general solution of the corresponding mathematical physics equations

from one coordinate system to another, so as to get an exact analytical solution (as a Fourier series) of the interaction

problem for a collection of rigid and elastic bodies.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of fluid–structure interaction is wide and covers many types of both fluid and structural behaviour. Such

problems can be interesting for researching processes of vibrodisplacement and localization, decontamination of liquid

medium, airing and dispersion; in bioacoustics and cardiovascular medicine (for instance, for some problems involving

blood flow, where fluid and structure models are coupled); in nondestructive testing (for instance, the scattering of

acoustic waves can give important information about the internal composition of solids and fluids, yielding information

about internal inhomogeneities, asymmetries and defects from the scattering pattern); in technologies of resumption of

oil production in foul wells, etc. For many years, numerous authors have been interested in the dynamics of

fluid–structure interaction both for unbounded domains of either fluid or structure and for delimited ones, involving

both motionless and flowing fluids.
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List of Symbols

gm density of the shell material

gs density of the external elastic medium

l, m Lamé constants for the external elastic

medium

n Poisson coefficient of the shell material

ns Poisson coefficient of the elastic medium

r0 the shell radius

srr, srz, srj strains in the elastic medium

o frequency vibrations of the sphere

g1 density of the liquid inside the shell

F(1) wave potential inside the shell

F(2), c, wdisplacement potentials outside the shell

al, at speeds of longitudinal and transversal waves

in the elastic medium

A(x), B(1)(x), B(2)(x), D(x) unknown functions

c* c1/cm

c1 sound speed in the liquid inside the shell

E Young’s modulus of the shell material

Es Young’s modulus of the elastic medium

h the shell thickness

O,r,z,j the cylindrical coordinate system

O,r,y,j the spherical coordinate system

p(1) hydrodynamic pressure inside the shell

r0 radius of the spherical inclusion

t time

w the shell deflection

u displacement of points of the shell middle

surface in axial direction

U(1) speed of liquid motion
~Us ¼ fUz;Ur;Ujg vector of displacements of the

elastic medium

xn unknown constants
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As thin shells are used in a variety of applications, they continue to arouse the interest of researchers who study their

behaviour under dynamic and static loads. Thin shells are commonly used in the aeronautical industry, in the

generation of nuclear energy and in the construction industry. Cylindrical shapes are also widely used in various forms

as pressurized containers, pipes, and structural components. The presence of a liquid inside a shell (usually, these shells

are made as thin as possible for weight and cost considerations), as has been already mentioned, has an important

influence on the dynamic behaviour of the structure and can create problems which are difficult to solve.

The free vibration characteristics of a fluid-surrounded or fluid-filled cylindrical shell subjected to various loads have

been of great concern in engineering design. Hence, many investigations in this area have been carried out. The free

vibration analysis of two infinitely long, coaxial cylinders containing fluid was performed by Krajcinovic (1974). Chen

and Rosenberg (1975) derived a frequency equation for two concentrically arranged circular cylindrical shells

containing and separated by incompressible fluid and obtained an approximate closed-form solution. The free vibration

of an infinitely long cylindrical shell under axisymmetric hydrodynamic pressures of the external and internal fluids was

studied using a Fourier cosine transformation by Endo and Tosaka (1989). Tani et al. (1989) performed a study on the

free vibration of clamped coaxial cylindrical shells partially filled with incompressible inviscid fluid; the theoretical

analysis was based on the Galerkin method and the velocity potential theory for the fluid.

A lot of papers were devoted to the multi-linked problems of interaction between shells and medium. Systematic

reviews of these works have been presented in the monographs by Vol’mir (1979), Guz’ et al. (1978), Shenderov (1972),

in articles by Olsson (1993, 1990), Iakovlev (2004), Scandrett and Canright (1991), and in other publications.

It should be mentioned that simplicity of boundary surfaces was the characteristic feature of the overwhelming

majority of the problems considered. As for hydroelasticity problems, interaction of the single shells (or rigid bodies)

with the surrounding medium [for example, in the article by Iakovlev (2002), or in the monograph by Shenderov

(1972)], or interaction of the bodies with the same type of surfaces—families of parallel cylinders [for example, in the

monograph by Shenderov (1972) and articles by Doolittle and Uberall (1966), Magrab (1972), Honarvar and Sinclair

(1996)] or families of spherical (spheroid) bodies [for example, in the work by Scandrett and Canright (1991)]—in the

ideal compressible and incompressible liquids and in a viscous medium [in the monograph by Guz’ (1998)] were also

considered.

For the last 10 years the work on dynamics of interaction of shells with inclusions (modelled as interaction of bodies

with different geometric forms) have appeared [for example, articles by Kubenko and Dzyuba (2000, 2001), Kubenko

and Kruk (1999) and Olsson (1990, 1993)]. For such problems there are many approaches (both analytical and

numerical) for their solution. Among them are the 5T-matrix methodc, suggested by Waterman (1969), combining

separation of variables in the Helmholtz equation and solving the integral equation;5null-field methodc, investigated

in detail by Bates and Wall (1977), based on the same idea; the method of series together with using the addition

theorems for the corresponding wave functions, which enables the boundary problems to be reduced to investigating

and solving infinite systems of algebraic equations [the monograph by Guz’ et al. (1978), for example, illustrates this

approach]. Such methods can be applied for solving problems on sound diffraction on surfaces of arbitrary form, on
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sound diffraction on elastic bodies and on the problems of elastic wave diffraction in a solid, on diffraction of waves in

an elastic medium, etc.

When fluid–structure interaction problems cannot be solved analytically, numerical methods are applied. Two

outstanding numerical methods are the boundary element method (BEM) and the finite element method (FEM). With

numerical methods, special features have to be introduced in order to be able to deal with fluid–structure interaction

problems in unbounded domains. The BEM is a boundary discretization method and hence presents an efficient tool for

solving radiation problems in unbounded domains. However, the method fails at so-called ‘‘critical frequencies’’, as

weak singular boundary integrals occur. This disadvantage does not appear when the finite element method is used; but,

as the FEM is a domain discretization method, it is actually not appropriate for solving problems in infinite domains.

To overcome this difficulty, the theory of semi-infinite and infinite elements has been developed; the so-called

‘‘Dirichlet-to-Neumann’’ boundary condition for solving problems in infinite domains has been elaborated. Another

approach is to introduce a boundary condition on the outer boundary of the computational domain. This boundary

condition has to simulate the infinite outer domain: i.e., it represents the influence of the unbounded domain on the

finite domain discretized with finite elements. To overcome the inability to deal with open field scattering problems, the

FEM has also been coupled, for example, with the bimoment method, modal expansion and absorbing boundary

condition. But a full literature review regarding this subject is not the main goal of the present paper. So, as examples,

the articles by Berot and Peseux (1998), Kochupillai et al. (2002), Mallardo and Aliabadi (1998), Selmane and Lakis

(1997), Zhang et al. (2002) can be mentioned as works in which the dynamics of the interaction between shells and

liquid medium using the FEM/BEM technique is considered.

Axisymmetric systems, consisting of an infinitely long thin elastic cylindrical shell, submerged in an unbounded

elastic medium, filled by an ideal compressible liquid and containing a vibrating spherical inclusion, are considered in

the present paper. The analysis of phenomena in these systems is mainly based on the papers by Kubenko and Dzyuba

(2000, 2001, 2003).

The potential function, which defines pulsating motion of a spherical inclusion in compressible (approximately

acoustic) liquid, filling a circular cylindrical cavity, was constructed in papers by Kubenko and Dzyuba (2000, 2001)

and Kubenko and Kruk (1999). In these papers it is supposed that a source of spherical form is situated on the cavity

axis, thus there is axial symmetry. In the paper by Kubenko and Dzyuba (2000) the authors considered an axisymmetric

problem on vibrations of a sphere in a rigid cylindrical cavity containing compressible liquid. A problem of interaction

of a stiff cylindrical cavity with a finite number of spherical inclusions in compressible liquid filling the cavity was

described in the paper by Kubenko and Dzyuba (2003). A solution of the problem of construction of the potential

function, defined by motion of a spherical body in a predetermined manner in compressible liquid, filling a thin elastic

cylindrical shell, was obtained by Kubenko and Dzyuba (2001); numerical results of concrete problems were given.

The dynamic behaviour of the hydroelastic systems under consideration in the present paper can be described by

equations modelling movement of an ideal compressible liquid, of a thin elastic shell and an elastic medium. The

equations of acoustic theory, of the theory of thin elastic shells based on the Kirchhoff–Love hypotheses and the Lamé

equations have been considered.

The main difficulty in the problem under consideration consists in so-called triple interaction: between the shell and

the fluid and the elastic medium from one side, and between bodies with different geometries (the cylindrical shell and

the spherical source) from the other. It is difficult to get a total analytical solution which takes into account both all

possible waves many times scattered on the bodies of the system considered and the important influence of the fluid and

the elastic medium on the system dynamic behaviour, because separate components of the total solution belong to

different coordinate systems.

Overcoming this difficulty has required elaboration of the mathematical technique allowing rewriting a total solution

of corresponding equations of mathematical physics from one coordinate system to another. Thus, solution of the

problem under consideration has been based on the possibility of representing particular solutions of the Helmholtz

equation, written through the cylindrical coordinates, with the help of particular solutions of the same equation written

through the spherical coordinates, and vice versa. Due to this mathematical procedure one has total solutions in the

coordinate system of each body of the system under consideration which enable to satisfy the boundary conditions. As a

result of satisfying the boundary conditions, an infinite system of algebraic equations has been obtained to define

coefficients of expansion of the fluid velocity potential into the Fourier series according to Legendre polynomials. The

wave potential has been chosen as a desired function, through which all the rest of the characteristics of the system

under consideration can be expressed.

Two mechanical systems have been considered (depending on the character of the distribution of the vibrating

velocity along the surface of the spherical inclusion): with a pulsating sphere (the case of uniform amplitude-phase

distribution of the velocity along the surface) and with the sphere oscillating along the shell axis. The hydrodynamic

characteristics of the liquid inside the cylindrical volume have been investigated versus the frequency in order to analyse
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‘‘resonance’’ phenomena. The comparison with frequency dependencies of the hydrodynamic characteristics of the

corresponding plane axisymmetric hydroelastic system has been made.
2. Problem statement

A thin infinitely long elastic circular cylindrical shell with radius r0 is filled with an ideal compressible liquid, the

properties of which are described by the speed of sound c1 and the density g1. The shell is enclosed by an unbounded

elastic medium with density gs. A spherical source of radius r0 is located inside the shell on its axis. The source surface

vibrates harmonically according to a predetermined time law: e�iot. The spherical body and the cylindrical shell do not

have points of contact. It is necessary to determine an internal and an external (with respect to the shell) wave field, and

to evaluate their interaction and dependency versus the excitation frequency.

Let us refer the cylindrical shell to the cylindrical coordinate system (O, r, z, j), in which the Oz-axis coincides with

the cylinder axis. Let us connect the spherical coordinates r, y, j with the spherical body centre lying on the cylinder

axis (Fig. 1)U

Liquid motion is supposed to be irrotational, axisymmetric in view of the symmetry of the problem geometry, and

amplitudes of the disturbances in the fluid are assumed to be small. Therefore, a boundary problem for the internal

medium consists in searching for a solution of the Helmholtz equation:

r2 �
1

c21

q2

qt2

� �
Fð1Þ e�iot ¼ 0. (1)

Here, r2 is the Laplacian, F(1) is the wave potential inside the shell, o is circular frequency of vibrations of the sphere

which is known, and i2 ¼ �1.

It should be noted that time multiplier e�iot should be kept in mind henceforth and all system characteristics will be

considered as independent of the angle coordinate j because of the axial symmetry of the problem.

The desired solution must satisfy the following boundary conditions:
(i)
 on the surface of contact of the shell and liquid filler (nonpenetration condition):

qFð1Þðr; zÞ
qr

����
r¼r0

¼ iowðzÞ. (2)
(ii)
 on the sphere surface

qFð1Þðr; yÞ
qr

����
r¼r0

¼ V ðyÞ. (3)
Fig. 1. Geometry of the hydroelastic system considered.
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Also it must satisfy the condition of attenuation of the disturbances at infinity

lim
r!1

Fð1Þ ¼ 0 (4)

or the condition of boundedness of the disturbances inside the cylindrical volume

lim
r!0

Fð1Þ ¼ const. (5)

In Eqs. (2)–(5), w is the shell deflection (w is considered to be positive inward); V(y) is a known function, which can be

represented as the series according to the Legendre polynomials:

V ðyÞ ¼
X1
n¼0

VnPnðcos yÞ.

Let us recall that the wave potential F(1) is connected with the pressure and the velocity of liquid motion by the

formulas

pð1Þ ¼ ig1oF
ð1Þ; ~U

ð1Þ
¼ gradFð1Þ. (6)

The behaviour of the external elastic medium can be described by the vector Lamé equation written for the case of

steady motion with exponential time dependency:

a2l grad div ~Us � a2t rot rot
~Us þ o2 ~Us ¼ 0,

a2l ¼
lþ 2m

gs

; a2t ¼
m
gs

. ð7Þ

Here, ~Us ¼ fUz;Ur;Ujg is a vector of the displacements of the elastic medium; l and m are Lamé’s constants, connected

with the material constants with the help of the following relations:

l ¼
Esns

ð1þ nsÞð1� 2nsÞ
; m ¼

Es

1þ ns

.

The subscript s (solid) points out that this definition is related to the elastic medium; ns is the Poisson’s ratio of the

elastic medium and Es the modulus of elasticity.

In general, for the elastic medium, in contrast to the liquid one, the vector of the displacements ~Us cannot be simply

expressed through a scalar function of the potential. In addition it is necessary to consider a vector function (Guz’ et al.,

1978; Morse and Feshbach, 1960). Thus, the vector of the displacements of elastic medium ~Us should be presented as

follows:

~Us ¼ ~U
ðGÞ

s þ
~U
ðMÞ

s þ ~U
ðNÞ

s , (8)

where

~U
ðGÞ

s ¼ grad Fð2Þ ¼~ez
qFð2Þ

qz
þ~er

qFð2Þ

qr
þ~ej

1

r
qFð2Þ

qj
,

~U
ðMÞ

s ¼ rot ð~ezcÞ ¼~ej
1

r
qc
qj
�~er

qc
qr

,

~U
ðNÞ

s ¼
at

o
rot rotð~ezwÞ ¼

at

o
~ez

o2

a2t
wþ

q2w
qz2

� �
þ~er

q2w
qz qr

þ~ej
1

r
q2w
qz qj

� �
.

Here F(2), c, w are solutions of the following scalar wave equations:

r2Fð2Þ þ
o2

a2l
Fð2Þ ¼ 0; r2cþ

o2

a2
t

c ¼ 0; r2wþ
o2

a2t
w ¼ 0. (9)

Components of the displacement vector and the stresses in the elastic medium are presented in Appendix A.

Let us note that, for an axisymmetric case, deformations of the elastic medium do not depend on the angular

coordinate j of the coordinate systems considered. Thus, the displacement component Uj vanishes, and consequently

the scalar function c also vanishes: c ¼ 0 (Guz’ et al., 1978; Morse and Feshbach, 1960).

The statement of the boundary value problem for the external medium will be completed by accounting for certain

boundary conditions on the surface of contact of the shell and the external medium and the radiation condition at
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infinity for all solutions of Eq. (9). Conditions at the ‘‘shell-external medium’’ contact surface are expressed by
(i)
 the equality of normal displacements of the elastic medium and the shell:

Uzðr; zÞ
��
r¼r0
¼ wðzÞ. (10)
(ii)
 the equality of axial displacements of the elastic medium and the shell:

Uzðr; zÞ
��
r¼r0
¼ uðzÞ. (11)
Henceforth the dimensionless variables introduced are used as follows:

r̄ ¼
r

r0
; f̄ ¼

g1
gm

; t̄ ¼
tc1

r0
; ō ¼

or0
c1

; Ū ¼
U

c1
; F̄ð1Þ ¼

Fð1Þ

r0c1
,

c̄ ¼
c
r20
; p̄ ¼

p

g1c21
. ð12Þ

Hereafter the overbar is omitted in all expressions.

The cylindrical shell is subjected to the internal fluid load and the external elastic medium load. Such loading is

symmetric relative to the Oz-axis. Consequently, deformations of the shell median surface will not depend on the angle

of rotation around the Oz-axis (i.e., on the angular coordinate j), and the displacements of points of the median surface

along the arc will be identically equal to zero.

Taking into consideration the linear theory of shells (Vol’mir, 1979), based on the Kirchhoff–Love hypotheses, and

assuming that the deflections are small compared with the shell thickness, let us write out the following differential

equations of shell motion for the case of axisymmetric deformation:

q2uðzÞ

qz2
� n

qwðzÞ

qz
¼ �o2c�

2

uðzÞ,

� n
quðzÞ

qz
þ 1þ

h2

12

q4

qz4

� �
wðzÞ ¼

f

h
qð1; zÞ þ o2wðzÞ

� �
c�

2

, ð13Þ

where cn ¼ c1=cm. The sound speed in the shell material is cm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=½gmð1� n2Þ�

p
. It is recalled that hereafter only the

dimensionless variables (12) are used.

In the above: u is the displacement of points of the shell median surface in the axial direction; gm is the density of the

cylindrical shell material; E is the modulus of elasticity; n is the Poisson ratio; q is the distributed load on the shell both

from the external and internal side defined as follows:

q
��
r¼r0
¼ ð�p1 þ srrÞ

��
r¼r0
¼ ð�ioFð1Þ þ srrÞ

��
r¼r0

. (14)

3. Construction of solution of the boundary value problem

The field inside the shell is a result of the superposition of waves scattered many times on the surfaces of the

hydroelastic system considered. The liquid velocity potential inside the cylindrical volume F(1) has already been chosen

as a desired function. Let it be the sum of two functions: one function expresses waves scattered by the spherical

inclusion (the solution of Eq. (1) in spherical coordinates), and another function describes disturbances in the fluid

arising from scattering on the shell walls (the solution of Eq. (1) in cylindrical coordinates)7

Fð1Þ ¼ Fð1Þsph þ Fð1Þcyl.

The solution Fð1Þsph, damped as r-N, has the form

Fð1Þsphðr; yÞ ¼
X1
n¼0

xnhnðroÞPnðcos yÞ, (15)

where Pn are the Legendre polynomials; xn are undetermined constants; hn are the spherical Hankel functions of the first

kind.
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The particular solution of the Helmholtz Eq. (1) in cylindrical coordinates has the form

Fð1Þcylðr; z; xÞ ¼ Bð1Þ xð ÞJ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

q
r

� �
eixz.

This solution determines cylindrical waves with the wavenumber x running in the positive direction of the Oz-axis.

Combining all possible values of x, one can write the field Fð1Þcyl, which is finite everywhere inside the shell, according to

condition (5) as follows:

Fð1Þcylðr; zÞ ¼
Z 1
�1

Bð1ÞðxÞJ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

q
r

� �
eixzdx. (16)

Here J0, the Bessel function of zero order.

With the help of the correlations which link the cylindrical wave functions to the spherical ones and vice versa,

hnðorÞPnðcos yÞ ¼
i�n

2o

Z 1
�1

Pn
x
o

� �
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

q
r

� �
eixz dx,

eixzJ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

q
r

� �
¼
X1
n¼0

inð2nþ 1ÞPn
x
o

� �
jnðorÞPn cos yð Þ,

the total ‘‘internal’’ solution can be written in the coordinate system of each body as a series with separate variables of

the same coordinate system:

Fð1Þðr; zÞ ¼
Z 1
�1

AðxÞH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

q
r

� ��
þBð1ÞðxÞJ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

q
r

� ��
eixz dx, (17)

AðxÞ ¼
1

2o

X1
n¼0

xni
�nPn

x
o

� �
,

Fð1Þðr; yÞ ¼
X1
n¼0

½xnhnðorÞ þ BnjnðorÞ�Pnðcos yÞ;Bn ¼ inð2nþ 1Þ

Z 1
�1

Bð1ÞðxÞPn
x
o

� �
dx. (18)

Here jn is the spherical Bessel function of order n, H0 the Hankel function of the first kind and zero order and A(x), and
B(1)(x) are undetermined functions.

The external solutions, which are so-called ‘‘radiating solutions’’ satisfying the radiation conditions, have the

following forms:

Fð2Þðr; zÞ ¼
Z 1
�1

Bð2ÞðxÞH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

a2l
� x2

s
r

 !
eixz dx, (19)

wðr; zÞ ¼
Z 1
�1

DðxÞH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

a2
t

� x2
s

r

 !
eixz dx. (20)

where B(2)(x) and D(x) are unknown functions to be determined from the boundary conditions.
4. Satisfying the boundary conditions

First of all let us find mathematical relations between the component srr of the stress tensor, the displacements of the

elastic medium Uz, Ur and the desired functions with the help of well-known correlations (Guz’ et al., 1978; Morse and

Feshbach, 1960) between displacements and scalar potentials F(2) and w (Eqs. (A.1)), stresses and displacements

(Eqs. (A.2)):

Uz ¼

Z 1
�1

ixBð2ÞðxÞH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

a2l
� x2

s
r

 !
þ

at

o
o2

a2t
� x2

� �"
DðxÞH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

a2t
� x2

s
r

 !#
eixz dx, (21)
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Ur ¼ �

Z 1
�1

Bð2ÞðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

a2l
� x2

s
H1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

a2l
� x2

s
r

 !"
þ

at

o
ix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

a2t
� x2

s
DðxÞH1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

a2t
� x2

s
r

 !#
eixz dx, (22)

srr ¼
Z 1
�1

Bð2ÞðxÞbð2Þðx;rÞ þDðxÞdðx; rÞ
� �

eixz dx, (23)

where the symbols introduced here are presented in Appendix B.

It is mathematically convenient to satisfy the boundary condition on the shell surface in the Fourier image space.

Using the Fourier transform according to z-coordinate in the Eqs. (13) and taking into account Eq. (14) leads to the

following expressions in the image space, which link the shell deflections and axial displacements with the velocity

potential of the ‘‘internal’’ liquid and the stresses in the external elastic medium:

wF ðxÞ ¼ RðxÞ½sF
rr � ioFð1ÞF ð1; xÞ�, (24)

uF ðxÞ ¼ RuðxÞ½sF
rr � ioFð1ÞF ð1; xÞ�. (25)

Symbols introduced in these formulas are also presented in Appendix B. The superscript F denotes the Fourier

transform:

wF ðxÞ ¼
Z 1
�1

wðzÞe�ixzdx.

Further it is necessary to rewrite the boundary conditions on the thin elastic cylindrical shell surface (2), (10), (11)

into the Fourier image space:

qF 1ð ÞF ðr; xÞ
qr

����
r¼r0

¼ iowF ðxÞ, (26)

UF
r ðr; xÞ

���
r¼r0
¼ wF ðxÞ, (27)

UF
z ðr; xÞ

��
r¼r0
¼ uF ðxÞ. (28)

Here, in accordance with formulas (17), (21) and (22),

Fð1ÞF ðr; xÞ ¼ AðxÞH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
r

� �
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q
r

� �
, (29)

UF
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, (30)

UF
z ðr; xÞ ¼ ixBð2ÞðxÞH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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a2l
� x2
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 !
þ
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� �
DðxÞH0
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o2

a2t
� x2

s
r

 !
, (31)

and the expressions for the functions wF(x), uF(x) are defined by formulas (24) and (25).

Satisfying the boundary conditions (26)–(28) leads to the system of equations regarding the functions B(1)(x), B(2)(x),
and D(x). Solutions of this system represent mathematical expressions which link unknown functions with the desired

coefficients of the expansion of the liquid velocity potential (which determines the field, scattered by the sphere) in the

Fourier series according to the Legendre polynomials:

Bð1ÞðxÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p
H1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 

ð1þMðxÞÞ þ o2RðxÞH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p
J1

ffiffiffiffiffiffi
o2
p
� x2

	 

ð1þMðxÞÞ þ o2RðxÞJ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 
 AðxÞ, (32)
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Bð2ÞðxÞ ¼
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 

J1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 

� J0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 

H1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
J1
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p	 
 ioMð1ÞðxÞ

�
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o2 � x2

q
AðxÞ, ð33Þ

DðxÞ ¼ �
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 

J1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 

� J0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 

H1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p
J1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 

1þMðxÞð Þ þ o2RðxÞJ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 
 ioM ð2ÞðxÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

q
AðxÞ; ð34Þ

symbols introduced here are presented in Appendix B.

From the condition on the surface of the vibrating sphere (when r ¼ r0), Eq. (3), after taking into consideration the

potential in the form (18), one can obtain

X1
n¼0

xnh
0
nðor0ÞoPnðcos yÞ þ

X1
n¼0

Bnj
0
nðor0ÞoPnðcos yÞ ¼

X1
n¼0

VnPnðcos yÞ,

where the prime designates a derivative with respect to the argument of a spherical function.

It follows that for each n the following equality arises (by virtue of the orthogonality of the Legendre polynomials)

xnh
0
nðor0Þoþ Bnj

0
nðor0Þo ¼ Vn. (35)

Eqs. (18), (32), (35) lead to an infinite system of algebraic equations for the determination of the desired constants xn:

xn �
1

2o
j0nðor0Þ

h0nðor0Þ
ð2nþ 1Þ

X1
m¼0

in�mqmnxm ¼
Vn

oh0nðor0Þ
; n ¼ 0; 1; 2 . . . , (36)

where coefficients qmn have the form

qmn ¼ 2

Z 1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p
H1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 

1þMðxÞð Þ þ o2RðxÞH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p
J1

ffiffiffiffiffiffi
o2
p
� x2

	 

1þMðxÞð Þ þ o2RðxÞJ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � x2

p	 
 Pn
x
o

� �
Pm

x
o

� �
dx, (37)

when the sum of indices n+m is even; otherwise qmn ¼ 0.

The infinite system of algebraic Eq. (36) belongs to the class of normal type systems. It had been demonstrated by

Kubenko and Dzyuba (2000) that the determinant of a system similar to system (36) is the determinant of the normal

type. Thus, the system obtained has a unique bounded solution as a system of normal type. This solution can be

obtained by the truncation method.

Note that constants xn satisfying equations of system (36) determine an exact solution of the problem which takes

into consideration all possible interactions of the shell and the spherical inclusion arising from multi-scattering.

Components of expressions (36) and (37) have evident physical meaning. Free terms coincide with the coefficients

defining radiation of the sound wave by a single sphere without accounting for the effects of multi-scattering. The sum

describes the interaction between the bodies. It contains the multiplier jn
0(o r0)/hn

0(or0) which depends on the distance

between interacting bodies. This multiplier decreases as the spherical inclusion dimensions (the wave distances or0)

decrease, and the role of interaction drops. Furthermore, there is the multiplier qmn, which defines the ‘‘coefficients of

sound diffraction’’ on the thin elastic cylindrical shell loaded with the ideal compressible fluid from inside and with the

unbounded elastic medium from the outside. The function M(x) which belongs to this multiplier defines the influence of

the external elastic medium, and the function R(x) defines the influence of the shell elastic properties. If these functions
were equal to zero the multiplier qmn would be represented by the function H1(Oo2–x2)/J1(Oo2–x2) only and would

express ‘‘coefficients of sound diffraction’’ on an absolutely rigid cylinder.

It should be noted that the above mathematical transformations admit the commutation of integrations and

summations.
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5. Numerical results

To find a numerical solution, the infinite system of algebraic Eq. (36) was truncated to a finite system of N equations.

The order of truncation was determined experimentally by controlling the accuracy of satisfaction of the boundary

conditions (about 10�4).

All numerical results have been computed for the dimensionless variables (12). The compressible liquid parameters

have been used as the normalization factors. The sound speed in the fluid inside the shell has been assumed to be equal

c1 ¼ 1500m/s and its density g1 ¼ 103 kg=m3. The shell material has been considered to be such that the ratio of the

internal liquid density to the density of this material is f ¼ 1=8, n ¼ 0:3 and E ¼ 2� 1011 N=m2. For the medium

external to the shell, the following parameters (corresponding to granite) have been chosen cs ¼ 3000m=s,
gs ¼ 3� 103 kg=m3, Es ¼ 0:5� 1011 Pa, ns ¼ 0:15.
To calculate the integrals similar to integral (37), the interval of integration has been divided into the following

intervals: 0pxoo/al, o/aloxoo/at, o/atoxoo, and ooxoN. The infinite limits of the integrals had to be truncated

for numerical evaluation: they have been replaced by finite limits so as to provide convergence of the results obtained at

least to the third decimal place. It should be noted that the subintegral functions have singular points inside the intervals

of integration—these are variable values at which the subintegral functions increase without limit. These points are

points at which the denominators of the integrands vanish, and the point x ¼ o. These points have been placed into a

sufficiently small e-neighbourhood during the computations. An analysis of the subintegral functions behaviour in each

e-neighbourhood of the singular points has revealed that values of the subintegral functions have identical absolute

magnitudes and opposite signs on the right and on the left of the singular points. Consequently, numerical results of the

integration in the e-neighbourhood of the singular points can be neglected.

The shell with wall thickness h ¼ 0:01 has been considered in the numerical examples. Dimensionless values of the

sphere radius have been varied within the limits of r0 ¼ 0.25 and 0.9. Two mechanical systems have been considered

(depending on the character of distribution of the vibrating speed along the spherical inclusion surface): an infinite thin

elastic cylindrical shell with ideal compressible liquid is submerged into an unbounded elastic medium and contains a

spherical body which
(i)
 pulsates at the shell axis according to the law:

V ðyÞ ¼ 1, (38)
(ii)
 oscillates along the axis of the shell according to the law:

V ðyÞ ¼ cosðyÞ. (39)
Frequency dependencies of the hydrodynamic characteristics of the liquid inside the cylindrical volume have been

investigated to find resonance phenomena in the systems considered. The influence of geometric dimensions of the

spherical inclusion on these characteristics has also been studied. Comparison with the following resonance curves has

been carried out: (i) with resonance curves of the plane axisymmetric hydroelastic system (which can be obtained from

the considered spatial system by means of choosing the plane containing body centres (z ¼ 0)), (ii) with resonance

curves of the hydroelastic system which consist of the infinite thin elastic cylindrical shell with ideal compressible liquid,

and also (iii) with resonance curves of a system consisting of an infinite thin elastic cylindrical shell with an ideal

compressible liquid inside and an unbounded elastic medium.

Figs. 2–5 show results of the numerical investigation of the frequency characteristics of the systems considered in the

diapason 0.2pop10. The graphic dependencies of absolute values of the hydrodynamic pressure of the fluid inside the

elastic cylindrical shell and of the fluid particle speed versus the frequency of sphere vibrations inside the shell are shown

on these figures.

Figs. 2 and 3 have been obtained for the case of pulsations of the spherical source on the shell axis according to law

(38), and Figs. 4 and 5 and for the case of sphere oscillations along the shell axis in accordance with Eq. (39). Figs. 2 and

4 represent the frequency dependence of absolute values of the hydrodynamic pressure, and Figs. 3 and 5 the frequency

dependence of the speed.

Different dimensions of the spherical source have been considered: Figs. 2(a), 3(a), 4(a), and 5(a), correspond to the

sphere with radius r0 ¼ 0:25; Figs. 2(b), 3(b), 4(b), and 5(b) to the sphere with the radius r0 ¼ 0:5; Figs. 2(c), 3(c), 4(c),
5(c), and 2(d), 3(d), 4(d), 5(d) to the spheres with the radii r0 ¼ 0:75 and r0 ¼ 0:9, respectively. The mentioned

characteristics of the pressure for both cases and of the speed for the case of the oscillating sphere (Figs. 2, 4, and 5)

have been considered in the plane containing the cylinder axis (y ¼ 0). The characteristics of the speed of liquid particles
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Fig. 2. Frequency characteristics of the hydrodynamic pressure inside the shell for the case of pulsations of spherical inclusions of

different radii: —, on the surface of the sphere; - - -, at point r ¼ r0 þ ðr02r0Þ=2; – � –, at r ¼ r0.

V.D. Kubenko, V.V. Dzyuba / Journal of Fluids and Structures 22 (2006) 577–594 587
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Fig. 3. Frequency characteristics of liquid speed inside the shell for the case of pulsations of spherical inclusions of different radii.

V.D. Kubenko, V.V. Dzyuba / Journal of Fluids and Structures 22 (2006) 577–594588
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Fig. 4. Frequency characteristics of hydrodynamic pressure inside the shell for the case of oscillations of spherical inclusions of

different radii; legend for different type of lines as in Fig. 2.

V.D. Kubenko, V.V. Dzyuba / Journal of Fluids and Structures 22 (2006) 577–594 589
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Fig. 5. Frequency characteristics of liquid speed inside the shell for the case of oscillations of spherical inclusions of different radii.

V.D. Kubenko, V.V. Dzyuba / Journal of Fluids and Structures 22 (2006) 577–594590
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Table 1

Eigenfrequencies of the plane axis symmetric hydroelastic system for the interval op20

Sphere radius, r0 o1 o2 o3 o4

0.25 4.448 8.537 12.679 16.842

0.5 6.393 12.625 18.889

0.75 12.606

0.9

Table 2

Eigenfrequencies of the system without a spherical inclusion for the interval op10

System no. o1 o2 o3 o4

1 2.572 5.282 8.151 11.099

2 3.832 7.016 10.173

System no. 1: the infinite thin elastic cylindrical shell with ideal compressible liquid (the presence of the external medium has not been

accounted for).

System no. 2: the infinite thin elastic cylindrical shell with ideal compressible liquid in the unbounded elastic medium.
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for the case of the pulsating sphere (Fig. 2) have been considered in the plane y ¼ p=2. The solid lines in Figs. 2 and 4

correspond to the pressure on the surface of the sphere (r ¼ r0); the dotted lines to the pressure calculated at the point

r ¼ r0 þ ðr02r0Þ=2; the chain-dotted ones to the pressure at the point r ¼ r0. The frequency dependence of the absolute

values of the speed have been calculated at the point r ¼ r0 þ ðr0 � r0Þ=2.
In the numerical example presented on Figs. 2(d) and 4(d) the curves calculated on the surface of the sphere; on the

cylinder surface, and also in the space between them did not differ much from each other because of the sufficiently

large sphere dimensions (r0 ¼ 0:9). Therefore, Figs. 2(d) and 4(d) represent only one of these characteristics: the

pressure on the sphere surface.

Eigenfrequencies of the plane axissymmetric hydroelastic system from the frequency diapason op10 are given in

Table 1 for comparison with the results of numerical investigation of 5resonancec phenomena in the axisymmetric

spatial system 5the spherical inclusion—column of the ideal compressible liquid—the thin elastic infinite cylindrical

shell—the unbounded elastic mediumc. Table 2 presents eigenfrequencies of the hydroelastic systems without a

spherical inclusion: (i) of the system with an infinite thin elastic cylindrical shell filled with an ideal compressible fluid

and (ii) of the system with an infinite thin elastic cylindrical shell filled with an ideal compressible fluid and submerged

into an unbounded elastic medium.

6. Analysis of the results

By numerical investigation it has been established that there are ‘‘resonance’’ phenomena in the mechanical systems

considered, since the systems have frequencies at which their characteristics (especially the hydrodynamic pressure and

the speed of motion of the ‘‘internal’’ liquid particles) reach large amplitude values. It has also been established that

such factors as presence and dimensions of the spherical inclusion have great influence on the values of the system

eigenfrequencies.

It is interesting to note that, notwithstanding the spherical inclusion dimensions, both mechanical systems considered

have frequencies at which the hydrodynamic pressure inside the shell reaches some finite increment of the amplitude.

These maxima correspond to the resonances of the liquid column inside the shell. It is well known (Shenderov, 1972)

that liquid in a vessel with absolutely rigid walls resounds at frequencies o which can be determined as roots of the

equation J1(o) ¼ 0 (first three values of these roots are 3.832; 7.016; 10.17).

As sphere dimensions grow, other maxima appear in the frequency characteristics of the systems investigated. These

maxima correspond to ‘‘resonances’’ arising from the interaction of the system bodies: when superposition of waves

many times scattered on these bodies leads to unlimited increment of the acoustic field amplitude. So, the number of

eigenfrequencies of the axisymmetric system consisting of the spherical inclusion, column of the ideal compressible
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liquid the infinite thin elastic cylindrical shell, and the unbounded elastic medium in the interval op10 increases as the

spherical inclusion radius increases (Figs. 2–5).

For example, for the system with the spherical inclusion with radius equal to a quarter of the shell radius (Figs.

2(a)–5(a)), none of the ‘‘eigenfrequencies’’ fall into the mentioned frequency interval; there are only maxima

corresponding to the resonances of an infinite cylindrical liquid column: o � 3:82 and 7.02. Let us also note that these

maxima correspond to the eigenfrequencies from the same frequency diapason of the system consisting of an infinite

thin elastic cylindrical shell filled with an ideal compressible liquid and surrounded with an unbounded elastic medium

(Table 2). This conclusion is confirmed by comparison of the results obtained and the results of calculations given by

Kubenko and Dzyuba (2003) for the multi-coupled system consisting of the spherical inclusion, column of the ideal

compressible liquid, and the infinite rigid cylinder.

It is interesting to note that eigenfrequencies of a shell with the same parameters (Table 2), which is not submerged in

an external medium (such a problem statement does not take into consideration the presence of the external medium),

are in the domain of lower frequencies. This can be explained by introducing some liquid mass on the internal side of

the wall of the shell, which does not have external loading, vibrating jointly with the shell wall; whereas the wall of the

shell loaded with an external medium can be considered as practically motionless.

The figures demonstrate that ‘‘resonances of interaction’’ depend on a manner of motion of the spherical

inclusion inside the shell, i.e., they are not the same for each of the mechanical systems considered. Thus, in the

case of the spherical body pulsations according to law (38) (Figs. 2 and 3), the values of the system eigenfrequencies

corresponding to the ‘‘resonances of interaction’’ move into the domain of larger frequencies as the sphere

radius increases. The eigenfrequencies of the plane axisymmetric system, obtained from the spatial one by extracting the

plane containing the centres of bodies, have similar dependence as the circular cylindrical cavity dimensions increase

(Table 1). But in the case of sphere oscillations according to law (39) (Figs. 4 and 5) the eigenfrequencies corresponding

to the ‘‘resonances of interaction’’ move into the domain of lower frequency values as the sphere radius

increases.

Such opposite behaviour can be explained as follows. In the mechanical system with the spherical body pulsating

inside the cylindrical shell, vibrations are given by even modes, i.e., the total field of disturbances is represented by

superposition of even vibration modes. The dominant mode in this case is the lowest vibration mode n ¼ 0. When the

sphere oscillates like a hard body along the shell axis, only odd modes contribute to the vibration process, and the

lowest vibration mode with the number n ¼ 1 is dominant.

7. Conclusions

An approach for solving the internal interaction problem for the system consisting of a thin elastic cylindrical shell

submerged in an unbounded elastic medium, filled with an ideal compressible liquid and containing a spherical

inclusion which vibrates in accordance with a predetermined law has been developed. The approach is based on

applying addition theorems of the special functions and equations, which enable particular solutions of the Helmholtz

equation in cylindrical coordinates to be constructed with the help of particular solutions of this equation in spherical

coordinates, and vice versa. This enables the total solution to be written in the coordinate system of each body of the

system, considered with the help of the superposition principle and taking into account the boundary conditions to be

satisfied on their surfaces. As a result, the complex multi-coupled problem of interaction of bodies with different

geometries is reduced to investigating and solving an infinite system of linear algebraic equations.

The approach suggested allows: (i) to get an exact analytical solution (as a Fourier series) of the interaction problem

for a family of bodies with different geometries; (ii) to evaluate the speed and pressure fields of a compressible liquid

and the deformation state of an external elastic medium and a cylindrical shell within an arbitrary precision; (iii) to

study some applied and technological processes (such as vibrodisplacement and localization, purification and

decontamination of liquid medium, airing and dispersion, technologies of resumption of oil production in foul wells) on

the basis of more exact input data.

The theory has been tested numerically on a steel shell immersed in granite, filled with water and containing a

vibrating spherical inclusion on its axis. The behaviour of the system has been investigated depending on the frequency

of forced oscillations. The presence of ‘‘resonance’’ phenomena in such hydroelastic systems has been found by this

study.

The methodology proposed in the present work has arisen during the realization of a joint project with the Sumy

Department of oil-and-gas production devoted to modelling and investigating the problem of renewal of oil production

in foul wells. Thus, it has already had actual practical application.

In conclusion, it should be noted that the method suggested can be extended to the case of an arbitrary number of

spherical inclusions, and perhaps to the case of liquid flow inside the shell.
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Appendix A

The components of the vector of displacements of the elastic medium are given by

Uz ¼
qFð2Þ
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a2t
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,
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. ðA:1Þ

The stresses in the elastic medium are given by
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Appendix B

The new symbols introduced in formula (23) are as follows:

bð2Þðx;rÞ ¼ ðl� 2mÞ
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The symbols introduced in formulas (24) and (25) are given by
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Finally, the symbols introduced in formulas (32)–(34) are:

MðxÞ ¼ bð2Þðx; 1ÞM ð1ÞðxÞ � dðx; 1ÞM ð1ÞðxÞ,
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